Coping with Catastrophic Risks

One year after the Indian Ocean tsunami, what are the lessons? The biggest one is that it was the type of disaster to which policymakers pay too little attention – one that has a very low or unknown probability of occurring, but that creates enormous losses if it does occur. Great as the death toll, physical and emotional suffering of survivors, and property damage caused by the tsunami were, even greater losses could be inflicted by other disasters of low (but not negligible), or unknown, probability.

For example, the asteroid that exploded above Siberia in 1908 with the force of a hydrogen bomb might have killed millions of people had it exploded above a major city. Yet that asteroid was only about 200 feet in diameter. A much larger one (among the thousands of dangerously large asteroids in orbits that intersect the earth’s) could strike the earth and cause the total extinction of the human race through a combination of shock waves, fire, tsunamis, and blockage of sunlight, wherever it struck.

Other catastrophic risks include natural epidemics (the 1918-1919 Spanish influenza killed between 20 million and 40 million people), nuclear or biological attacks by terrorists, certain types of lab accidents, and abrupt global warming. The probability of catastrophes, whether intentional or not, resulting from human activity appears to be increasing because of the rapidity and direction of technological advances.

To continue reading, please log in or enter your email address.

To read this article from our archive, please log in or register now. After entering your email, you'll have access to two free articles every month. For unlimited access to Project Syndicate, subscribe now.

required

By proceeding, you are agreeing to our Terms and Conditions.

Log in

http://prosyn.org/BljWlNw;

Cookies and Privacy

We use cookies to improve your experience on our website. To find out more, read our updated cookie policy and privacy policy.